Pullback Attractors for Non-autonomous Parabolic Equations Involving Grushin Operators

نویسنده

  • CUNG THE ANH
چکیده

Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear degenerate parabolic equation involving the Grushin operator in a bounded domain. We assume a polynomial type growth on the nonlinearity, and an exponential growth on the external force. The obtained results extend some existing results for non-autonomous reaction-diffusion equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Regularity and Exponential Growth of Pullback Attractors for Semilinear Parabolic Equations Involving the Grushin Operator

and Applied Analysis 3 The content of the paper is as follows. In Section 2, for the convenience of the reader, we recall some concepts and results on function spaces and pullback attractors which we will use. In Section 3, we prove the existence of pullback attractors in the spaces S0 Ω and L2p−2 Ω by using the asymptotic a priori estimate method. In Section 4, under additional assumptions of ...

متن کامل

On the Dynamics of Nonautonomous Parabolic Systems Involving the Grushin Operators

We study the long-time behavior of solutions to nonautonomous semilinear parabolic systems involving the Grushin operators in bounded domains. We prove the existence of a pullback Dattractor in L2 Ω m for the corresponding process in the general case. When the system has a special gradient structure, we prove that the obtained pullbackD-attractor is more regular and has a finite fractal dimensi...

متن کامل

Upper Semicontinuity of Pullback Attractors for Non-autonomous Generalized 2d Parabolic Equations

This paper is concerned with a generalized 2D parabolic equation with a nonautonomous perturbation −∆ut + α ∆ut + μ∆ u+∇ · −→ F (u) +B(u, u) = ǫg(x, t). Under some proper assumptions on the external force term g, the upper semicontinuity of pullback attractors is proved. More precisely, it is shown that the pullback attractor {Aǫ(t)}t∈R of the equation with ǫ > 0 converges to the global attract...

متن کامل

Global Attractors for Degenerate Parabolic Equations without Uniqueness

In this paper, using theory of attractors for multi-valued semiflows and semiprocesses, we prove the existence of compact attractor for a semilinear degenerate parabolic equation involving the Grushin operator in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. Mathematics Subject Classification: 35B41, 35K65, 35D05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010